Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 22, 2026
-
Free, publicly-accessible full text available December 12, 2025
-
Abstract We present a comparison of the measured cosmic ray (CR) muon fluxes from two identical portable low‐cost detectors at different geolocations and their sensitivity to space weather events in real time. The first detector is installed at Mount Wilson Observatory, CA, USA (geomagnetic cutoff rigidity Rc ∼ 4.88 GV), and the second detector is running on the downtown campus of Georgia State University in Atlanta, GA, USA (Rc ∼ 3.65 GV). The variation of the detected muon fluxes is compared to the changes in the interplanetary solar wind parameters at the L1 Lagrange point and geomagnetic indexes. In particular, we have investigated the muon flux behavior during three major interplanetary shock events and geomagnetic disturbances that occurred during July and August of 2022. To validate the interpretation of the measured muon signals, we compare the muon fluxes to the measurement from the Oulu neutron monitor (NM, Rc ∼ 0.8 GV). The results of this analysis show that the muon detector installed at Mount Wilson Observatory demonstrates a stronger correlation with a high‐latitude NM. Both detectors typically observe a muon flux decrease during the arrival of interplanetary shocks and geomagnetic storms. Interestingly, the decrease could be observed several hours before the onset of the first considered interplanetary shocks at L1 at 2022‐07‐23 02:28:00 UT driven by the high‐speed Coronal Mass Ejection and related geomagnetic storm at 2022‐07‐23 03:59:00 UT. This effort represents an initial step toward establishing a global network of portable low‐cost CR muon detectors for monitoring the sensitivity of muon flux changes to space and terrestrial weather parameters.more » « less
-
A collaborative effort between University of Washington, Shared Spectrum Company and Daintree Technologies is resulting in the first metro-scale spectrum observatory – CityScape. In this work, we provide an overview of the system architecture (both hardware and software components), the novel features that distinguish this from others and the design and operational challenges encountered.more » « less
-
null (Ed.)Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current ‘state of the art’ from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of ‘soft recommendations’ about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage ‘open science’ practices.more » « less
An official website of the United States government

Full Text Available